Total members 11895 |It is currently Sun Dec 22, 2024 8:29 am Login / Join Codemiles

Java

C/C++

PHP

C#

HTML

CSS

ASP

Javascript

JQuery

AJAX

XSD

Python

Matlab

R Scripts

Weka





hungarian algorithm java code:
java code
import java.util.Arrays;
public class HungarianAlgorithm {
private final double[][] costMatrix;
private final int rows, cols, dim;
private final double[] labelByWorker, labelByJob;
private final int[] minSlackWorkerByJob;
private final double[] minSlackValueByJob;
private final int[] matchJobByWorker, matchWorkerByJob;
private final int[] parentWorkerByCommittedJob;
private final boolean[] committedWorkers;

/**
* Construct an instance of the algorithm.
*
* @param costMatrix
* the cost matrix, where matrix[i][j] holds the cost of
* assigning worker i to job j, for all i, j. The cost matrix
* must not be irregular in the sense that all rows must be the
* same length.
*/
public HungarianAlgorithm(double[][] costMatrix) {
this.dim = Math.max(costMatrix.length, costMatrix[0].length);
this.rows = costMatrix.length;
this.cols = costMatrix[0].length;
this.costMatrix = new double[this.dim][this.dim];
for (int w = 0; w < this.dim; w++) {
if (w < costMatrix.length) {
if (costMatrix[w].length != this.cols) {
throw new IllegalArgumentException("Irregular cost matrix");
}
this.costMatrix[w] = Arrays.copyOf(costMatrix[w], this.dim);
} else {
this.costMatrix[w] = new double[this.dim];
}
}
labelByWorker = new double[this.dim];
labelByJob = new double[this.dim];
minSlackWorkerByJob = new int[this.dim];
minSlackValueByJob = new double[this.dim];
committedWorkers = new boolean[this.dim];
parentWorkerByCommittedJob = new int[this.dim];
matchJobByWorker = new int[this.dim];
Arrays.fill(matchJobByWorker, -1);
matchWorkerByJob = new int[this.dim];
Arrays.fill(matchWorkerByJob, -1);
}

/**
* Compute an initial feasible solution by assigning zero labels to the
* workers and by assigning to each job a label equal to the minimum cost
* among its incident edges.
*/
protected void computeInitialFeasibleSolution() {
for (int j = 0; j < dim; j++) {
labelByJob[j] = Double.POSITIVE_INFINITY;
}
for (int w = 0; w < dim; w++) {
for (int j = 0; j < dim; j++) {
if (costMatrix[w][j] < labelByJob[j]) {
labelByJob[j] = costMatrix[w][j];
}
}
}
}

/**
* Execute the algorithm.
*
* @return the minimum cost matching of workers to jobs based upon the
* provided cost matrix. A matching value of -1 indicates that the
* corresponding worker is unassigned.
*/
public int[] execute() {
/*
* Heuristics to improve performance: Reduce rows and columns by their
* smallest element, compute an initial non-zero dual feasible solution
* and create a greedy matching from workers to jobs of the cost matrix.
*/
reduce();
computeInitialFeasibleSolution();
greedyMatch();

int w = fetchUnmatchedWorker();
while (w < dim) {
initializePhase(w);
executePhase();
w = fetchUnmatchedWorker();
}
int[] result = Arrays.copyOf(matchJobByWorker, rows);
for (w = 0; w < result.length; w++) {
if (result[w] >= cols) {
result[w] = -1;
}
}
return result;
}

/**
* Execute a single phase of the algorithm. A phase of the Hungarian
* algorithm consists of building a set of committed workers and a set of
* committed jobs from a root unmatched worker by following alternating
* unmatched/matched zero-slack edges. If an unmatched job is encountered,
* then an augmenting path has been found and the matching is grown. If the
* connected zero-slack edges have been exhausted, the labels of committed
* workers are increased by the minimum slack among committed workers and
* non-committed jobs to create more zero-slack edges (the labels of
* committed jobs are simultaneously decreased by the same amount in order
* to maintain a feasible labeling).
* <p>
*
* The runtime of a single phase of the algorithm is O(n^2), where n is the
* dimension of the internal square cost matrix, since each edge is visited
* at most once and since increasing the labeling is accomplished in time
* O(n) by maintaining the minimum slack values among non-committed jobs.
* When a phase completes, the matching will have increased in size.
*/
protected void executePhase() {
while (true) {
int minSlackWorker = -1, minSlackJob = -1;
double minSlackValue = Double.POSITIVE_INFINITY;
for (int j = 0; j < dim; j++) {
if (parentWorkerByCommittedJob[j] == -1) {
if (minSlackValueByJob[j] < minSlackValue) {
minSlackValue = minSlackValueByJob[j];
minSlackWorker = minSlackWorkerByJob[j];
minSlackJob = j;
}
}
}
if (minSlackValue > 0) {
updateLabeling(minSlackValue);
}
parentWorkerByCommittedJob[minSlackJob] = minSlackWorker;
if (matchWorkerByJob[minSlackJob] == -1) {
/*
* An augmenting path has been found.
*/
int committedJob = minSlackJob;
int parentWorker = parentWorkerByCommittedJob[committedJob];
while (true) {
int temp = matchJobByWorker[parentWorker];
match(parentWorker, committedJob);
committedJob = temp;
if (committedJob == -1) {
break;
}
parentWorker = parentWorkerByCommittedJob[committedJob];
}
return;
} else {
/*
* Update slack values since we increased the size of the
* committed workers set.
*/
int worker = matchWorkerByJob[minSlackJob];
committedWorkers[worker] = true;
for (int j = 0; j < dim; j++) {
if (parentWorkerByCommittedJob[j] == -1) {
double slack = costMatrix[worker][j]
- labelByWorker[worker] - labelByJob[j];
if (minSlackValueByJob[j] > slack) {
minSlackValueByJob[j] = slack;
minSlackWorkerByJob[j] = worker;
}
}
}
}
}
}

/**
*
* @return the first unmatched worker or {@link #dim} if none.
*/
protected int fetchUnmatchedWorker() {
int w;
for (w = 0; w < dim; w++) {
if (matchJobByWorker[w] == -1) {
break;
}
}
return w;
}

/**
* Find a valid matching by greedily selecting among zero-cost matchings.
* This is a heuristic to jump-start the augmentation algorithm.
*/
protected void greedyMatch() {
for (int w = 0; w < dim; w++) {
for (int j = 0; j < dim; j++) {
if (matchJobByWorker[w] == -1
&& matchWorkerByJob[j] == -1
&& costMatrix[w][j] - labelByWorker[w] - labelByJob[j] == 0) {
match(w, j);
}
}
}
}

/**
* Initialize the next phase of the algorithm by clearing the committed
* workers and jobs sets and by initializing the slack arrays to the values
* corresponding to the specified root worker.
*
* @param w
* the worker at which to root the next phase.
*/
protected void initializePhase(int w) {
Arrays.fill(committedWorkers, false);
Arrays.fill(parentWorkerByCommittedJob, -1);
committedWorkers[w] = true;
for (int j = 0; j < dim; j++) {
minSlackValueByJob[j] = costMatrix[w][j] - labelByWorker[w]
- labelByJob[j];
minSlackWorkerByJob[j] = w;
}
}

/**
* Helper method to record a matching between worker w and job j.
*/
protected void match(int w, int j) {
matchJobByWorker[w] = j;
matchWorkerByJob[j] = w;
}

/**
* Reduce the cost matrix by subtracting the smallest element of each row
* from all elements of the row as well as the smallest element of each
* column from all elements of the column. Note that an optimal assignment
* for a reduced cost matrix is optimal for the original cost matrix.
*/
protected void reduce() {
for (int w = 0; w < dim; w++) {
double min = Double.POSITIVE_INFINITY;
for (int j = 0; j < dim; j++) {
if (costMatrix[w][j] < min) {
min = costMatrix[w][j];
}
}
for (int j = 0; j < dim; j++) {
costMatrix[w][j] -= min;
}
}
double[] min = new double[dim];
for (int j = 0; j < dim; j++) {
min[j] = Double.POSITIVE_INFINITY;
}
for (int w = 0; w < dim; w++) {
for (int j = 0; j < dim; j++) {
if (costMatrix[w][j] < min[j]) {
min[j] = costMatrix[w][j];
}
}
}
for (int w = 0; w < dim; w++) {
for (int j = 0; j < dim; j++) {
costMatrix[w][j] -= min[j];
}
}
}

/**
* Update labels with the specified slack by adding the slack value for
* committed workers and by subtracting the slack value for committed jobs.
* In addition, update the minimum slack values appropriately.
*/
protected void updateLabeling(double slack) {
for (int w = 0; w < dim; w++) {
if (committedWorkers[w]) {
labelByWorker[w] += slack;
}
}
for (int j = 0; j < dim; j++) {
if (parentWorkerByCommittedJob[j] != -1) {
labelByJob[j] -= slack;
} else {
minSlackValueByJob[j] -= slack;
}
}
}
}





Author:
Newbie
User avatar Posts: 1
Have thanks: 0 time
Post new topic Reply to topic  [ 1 post ] 

  Related Posts  to : hungarian algorithm java
 apriori algorithm java code     -  
 shortest path algorithm java     -  
 java hierarchical clustering algorithm     -  
 RSA encryption decryption cipher algorithm java     -  
 java code for decision tree algorithm     -  
 LZW data compression-decompression algorithm java code     -  
 bidirectional bubble sort algorithm implementation java     -  
 quicksort algorithm implementation java code- array sorting     -  
 Bubble Sort Algorithm Java Implementation Code-Sorting Array     -  
 id3 algorithm     -  



Topic Tags

Java Algorithms
cron





Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group
All copyrights reserved to codemiles.com 2007-2011
mileX v1.0 designed by codemiles team
Codemiles.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com