Total members 11894 |It is currently Thu Nov 21, 2024 10:06 am Login / Join Codemiles

Java

C/C++

PHP

C#

HTML

CSS

ASP

Javascript

JQuery

AJAX

XSD

Python

Matlab

R Scripts

Weka





Following is a expectation-maximization (EM) algorithm code
Code:
function [label, model, llh] = emgm(X, init)
% EM algorithm for Gaussian mixture model
% Written by Mo Chen ([email protected]). March 2009.
%% initialization
fprintf('EM for Gaussian mixture: running ... ');
R = initialization(X,init);

tol = 1e-6;
maxiter = 500;
llh = -inf(1,maxiter);
converged = false;
t = 1;
while ~converged && t < maxiter
    t = t+1;
    model = maximization(X,R);
    [R, llh(t)] = expectation(X,model);
    converged = llh(t)-llh(t-1) < tol*abs(llh(t));
end
[~,label(1,:)] = max(R,[],2);
llh = llh(2:t);
if converged
    fprintf('converged in %d steps.\n',t);
else
    fprintf('not converged in %d steps.\n',maxiter);
end

function R = initialization(X, init)
[d,n] = size(X);
if isstruct(init)  % initialize with model
    R  = expectation(X,init);
elseif length(init) == 1  % random initialization
    k = init;
    idx = randsample(n,k);
    m = X(:,idx);
    [~,label] = max(bsxfun(@minus,m'*X,sum(m.^2,1)'/2));
    while k ~= unique(label)
        idx = randsample(n,k);
        m = X(:,idx);
        [~,label] = max(bsxfun(@minus,m'*X,sum(m.^2,1)'/2));
    end
    R = full(sparse(1:n,label,1,n,k,n));
elseif size(init,1) == 1 && size(init,2) == n  % initialize with labels
    label = init;
    k = max(label);
    R = full(sparse(1:n,label,1,n,k,n));
elseif size(init,1) == d && size(init,2) > 1  %initialize with only centers
    k = size(init,2);
    m = init;
    [~,label] = max(bsxfun(@minus,m'*X,sum(m.^2,1)'/2));
    R = full(sparse(1:n,label,1,n,k,n));
else
    error('ERROR: init is not valid.');
end

function [R, llh] = expectation(X, model)
mu = model.mu;
Sigma = model.Sigma;
w = model.weight;

n = size(X,2);
k = size(mu,2);
R = zeros(n,k);

for i = 1:k
    R(:,i) = loggausspdf(X,mu(:,i),Sigma(:,:,i));
end
R = bsxfun(@plus,R,log(w));
T = logsumexp(R,2);
llh = sum(T)/n; % loglikelihood
R = bsxfun(@minus,R,T);
R = exp(R);

function model = maximization(X, R)
[d,n] = size(X);
k = size(R,2);
sigma0 = eye(d)*(1e-6); % regularization factor for covariance

s = sum(R,1);
w = s/n;
mu = bsxfun(@rdivide, X*R, s);
Sigma = zeros(d,d,k);
for i = 1:k
    Xo = bsxfun(@minus,X,mu(:,i));
    Xo = bsxfun(@times,Xo,sqrt(R(:,i)'));
    Sigma(:,:,i) = (Xo*Xo'+sigma0)/s(i);
end

model.mu = mu;
model.Sigma = Sigma;
model.weight = w;




_________________
M. S. Rakha, Ph.D.
Queen's University
Canada


Author:
Mastermind
User avatar Posts: 2715
Have thanks: 74 time
Post new topic Reply to topic  [ 1 post ] 

  Related Posts  to : expectation-maximization (EM) algorithm
 id3 algorithm     -  
 Rijndael Algorithm     -  
 CPU priority algorithm...     -  
 Dijkstra Algorithm     -  
 Generic Algorithm     -  
 Data set for ID3 algorithm     -  
 genetic algorithm example     -  
 hungarian algorithm java     -  
 Encrypts using vigenere algorithm     -  
 Prime Generator Algorithm     -  



Topic Tags

Matlab Algorithms
cron





Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group
All copyrights reserved to codemiles.com 2007-2011
mileX v1.0 designed by codemiles team
Codemiles.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com